On this page本页内容
db.collection.mapReduce(map, reduce, { <options> })¶mongo Shell Method方法
This page documents the 此页面记录了mongo shell method, and does not refer to the MongoDB Node.js driver (or any other driver) method. mongoshell方法,未提及MongoDB Node.js驱动程序(或任何其他驱动程序)方法。For corresponding MongoDB driver API, refer to your specific MongoDB driver documentation instead.有关相应的MongoDB驱动程序API,请参阅特定的MongoDB驱动程序文档。
The db.collection.mapReduce() method provides a wrapper around the mapReduce command.db.collection.mapReduce()方法提供了mapReducee命令的包装器。
Aggregation Pipeline as Alternative聚合管道作为替代方案
Aggregation pipeline provides better performance and a more coherent interface than map-reduce, and map-reduce expressions can be rewritten using aggregation pipeline operators, such as 聚合管道提供了比map-reduce更好的性能和更一致的接口,并且可以使用聚合管道运算符(如$group, $merge, etc.$group、$merge等)重写map-reduce表达式。
For map-reduce expressions that require custom functionality, MongoDB provides the 对于需要自定义功能的map reduce表达式,MongoDB从4.4版开始提供$accumulator and $function aggregation operators starting in version 4.4. $accumulator和$function聚合运算符。These operators provide users with the ability to define custom aggregation expressions in JavaScript.这些运算符使用户能够在JavaScript中定义自定义聚合表达式。
For examples of aggregation alternatives to map-reduce operations, see Map-Reduce Examples. 有关映射减少操作的聚合替代方案的示例,请参阅映射减少示例。See also Map-Reduce to Aggregation Pipeline.另请参见映射-减少到聚合管道。
Note
Starting in version 4.4, MongoDB ignores the verbose option.从版本4.4开始,MongoDB将忽略verbose选项。
Starting in version 4.2, MongoDB deprecates:从4.2版开始,MongoDB不推荐:
map-reduce选项创建新的分片集合,以及使用sharded选项进行map-reduce。nonAtomic: false选项的显式说明。db.collection.mapReduce() has the following syntax:语法如下所示:
db.collection.mapReduce() takes the following parameters:采用以下参数:
map |
JavaScript |
|
reduce |
JavaScript |
|
options |
document | db.collection.mapReduce().db.collection.mapReduce()指定其他参数的文档。 |
The following table describes additional arguments that 下表介绍了db.collection.mapReduce() can accept.db.collection.mapReduce()可以接受的其他参数。
out |
string or document |
|
query |
document | map function.map函数的文档。 |
sort |
document | |
limit |
number | map function.map函数输入的最大文档数。 |
finalize |
Javascript or String |
|
scope |
document | map, reduce and finalize functions.map、reduce和finalize函数中访问的全局变量。 |
jsMode |
boolean |
|
verbose |
boolean |
|
collation |
document |
Collation
|
bypassDocumentValidation |
boolean |
|
Note
map-reduce operations and 和$where operator expressions cannot access certain global functions or properties, such as 运算符表达式无法访问db, that are available in the mongo shell.mongo shell中可用的某些全局函数或属性,例如db。
The following JavaScript functions and properties are available to 以下JavaScript函数和属性可用于map-reduce操作和map-reduce operations and $where operator expressions:$where运算符表达式:
argsMaxKeyMinKey |
assert()BinData()DBPointer()DBRef()doassert()emit()gc()HexData()hex_md5()isNumber()isObject()ISODate()isString() |
Map()MD5()NumberInt()NumberLong()ObjectId()print()printjson()printjsononeline()sleep()Timestamp()tojson()tojsononeline()tojsonObject()UUID()version() |
map Functionmap函数的要求¶The map function is responsible for transforming each input document into zero or more documents. map函数负责将每个输入文档转换为零个或多个文档。It can access the variables defined in the 它可以访问scope parameter, and has the following prototype:scope参数中定义的变量,并具有以下原型:
The map function has the following requirements:map函数具有以下要求:
map function, reference the current document as this within the function.map函数中,将当前文档引用为函数中的this。map function should not access the database for any reason.map函数不应出于任何原因访问数据库。map function should be pure, or have no impact outside of the function (i.e. side effects.)map功能应该是纯的,或者在功能之外没有影响(即副作用)map function may optionally call emit(key,value) any number of times to create an output document associating key with value.map函数可以选择调用emit(key,value)任意次数,以创建将key与value关联的输出文档。mapReduce no longer supports the deprecated BSON type JavaScript code with scope (BSON type 15) for its functions. mapReduce不再支持不推荐的BSON类型JavaScript代码,其功能的作用域为(BSON类型15)。map function must be either BSON type String (BSON type 2) or BSON type JavaScript (BSON type 13). map函数必须是BSON类型字符串(BSON类型2)或BSON类型JavaScript(BSON类型13)。map function, use the scope parameter.map函数中访问的常量值,请使用scope参数。
map function has been deprecated since version 4.2.1.map函数作用域的JavaScript代码。The following 根据输入文档map function will call emit(key,value) either 0 or 1 times depending on the value of the input document’s status field:status字段的值,以下map函数将调用emit(key,value)0次或1次:
The following 以下map function may call emit(key,value) multiple times depending on the number of elements in the input document’s items field:map函数可能会多次调用emit(key,value),具体取决于输入文档的items字段中的元素数:
reduce Functionreduce函数的要求¶The reduce function has the following prototype:reduce函数具有以下原型:
The reduce function exhibits the following behaviors:reduce函数表现出以下行为:
reduce function should not access the database, even to perform read operations.reduce函数不应该访问数据库,甚至不应该执行读取操作。reduce function should not affect the outside system.reduce函数不应影响外部系统。reduce function for a key that has only a single value. reduce函数。values argument is an array whose elements are the value objects that are “mapped” to the key.values参数是一个数组,其元素是“映射”到key的value对象。reduce function more than once for the same key. key多次调用reduce函数。reduce function for that key will become one of the input values to the next reduce function invocation for that key.reduce函数的前一个输出将成为该键的下一个reduce函数调用的输入值之一。reduce function can access the variables defined in the scope parameter.reduce函数可以访问scope参数中定义的变量。reduce must not be larger than half of MongoDB’s maximum BSON document size. reduce的输入不能超过MongoDB最大BSON文档大小的一半。reduce steps.reduce步骤中将其连接在一起时,可能会违反此要求。mapReduce no longer supports the deprecated BSON type JavaScript code with scope (BSON type 15) for its functions. mapReduce不再支持不推荐的BSON类型JavaScript代码,其功能的作用域为(BSON类型15)。reduce function must be either BSON type String (BSON type 2) or BSON type JavaScript (BSON type 13). reduce函数必须是BSON类型字符串(BSON类型2)或BSON类型JavaScript(BSON类型13)。reduce function, use the scope parameter.reduce函数中访问的常量值,请使用scope参数。
reduce function has been deprecated since version 4.2.1.reduce函数作用域的JavaScript代码。Because it is possible to invoke the 因为可以对同一个键多次调用reduce function more than once for the same key, the following properties need to be true:reduce函数,所以以下属性必须为true:
value emitted by the map function.map函数发出的value的类型相同。reduce function must be associative. reduce函数必须是关联的。reduce function must be idempotent. reduce函数必须是幂等函数。reduce function should be commutative: that is, the order of the elements in the valuesArray should not affect the output of the reduce function, so that the following statement is true:reduce函数应该是可交换的:也就是说,valuesArray中元素的顺序不应该影响reduce函数的输出,因此下面的语句是正确的:
outYou can specify the following options for the 可以为out parameter:out参数指定以下选项:
This option outputs to a new collection, and is not available on secondary members of replica sets.此选项输出到新集合,在副本集的辅助成员上不可用。
Note
Starting in version 4.2, MongoDB deprecates:从4.2版开始,MongoDB不推荐:
nonAtomic: false选项的显式说明。This option is only available when passing a collection that already exists to 仅当将已存在的集合传递给out. out时,此选项才可用。It is not available on secondary members of replica sets.它在副本集的辅助成员上不可用。
When you output to a collection with an action, the 当通过操作输出到集合时,out has the following parameters:out具有以下参数:
<action>replace
Replace the contents of the 如果存在具有<collectionName> if the collection with the <collectionName> exists.<collectionName>的集合,则替换<collectionName>的内容。
merge
Merge the new result with the existing result if the output collection already exists. 如果输出集合已存在,则将新结果与现有结果合并。If an existing document has the same key as the new result, overwrite that existing document.如果现有文档的密钥与新结果相同,请覆盖该现有文档。
reduce
Merge the new result with the existing result if the output collection already exists. 如果输出集合已存在,则将新结果与现有结果合并。If an existing document has the same key as the new result, apply the 如果现有文档与新结果具有相同的密钥,请对新文档和现有文档应用reduce function to both the new and the existing documents and overwrite the existing document with the result.reduce函数,并用结果覆盖现有文档。
db:
Optional. 可选。The name of the database that you want the map-reduce operation to write its output. 希望map reduce操作写入其输出的数据库的名称。By default this will be the same database as the input collection.默认情况下,这将是与输入集合相同的数据库。
sharded:
Note
Starting in version 4.2, the use of the 从4.2版开始,不推荐使用sharded option is deprecated.sharded选项。
Optional. 可选。If 如果为true and you have enabled sharding on output database, the map-reduce operation will shard the output collection using the _id field as the shard key.true,并且您已经在输出数据库上启用了分片,则map-reduce操作将使用_id字段作为分片键对输出集合进行分片。
If 如果true and collectionName is an existing unsharded collection, map-reduce fails.true和collectionName是现有的未分片集合,则map-reduce将失败。
nonAtomic:
Note
Starting in MongoDB 4.2, explicitly setting nonAtomic to false is deprecated.
Optional. 可选。Specify output operation as non-atomic. 将输出操作指定为非原子操作。This applies only to the 这仅适用于merge and reduce output modes, which may take minutes to execute.merge和“reduce输出模式,这可能需要几分钟才能执行。
By default 默认情况下,nonAtomic is false, and the map-reduce operation locks the database during post-processing.nonAtomic为false,map-reduce操作在后处理期间锁定数据库。
If 如果nonAtomic is true, the post-processing step prevents MongoDB from locking the database: during this time, other clients will be able to read intermediate states of the output collection.nonAtomic为true,则后处理步骤将阻止MongoDB锁定数据库:在此期间,其他客户端将能够读取输出集合的中间状态。
Perform the map-reduce operation in memory and return the result. 在内存中执行map-reduce操作并返回结果。This option is the only available option for 此选项是复制集的次要成员上out on secondary members of replica sets.out的唯一可用选项
The result must fit within the maximum size of a BSON document.结果必须符合BSON文档的最大大小。
finalize Functionfinalize函数的要求¶The finalize function has the following prototype:finalize函数具有以下原型:
The finalize function receives as its arguments a key value and the reducedValue from the reduce function. finalize函数从reduce函数接收key值和reducedValue作为其参数。Be aware that:
finalize function should not access the database for any reason.finalize函数不应出于任何原因访问数据库。finalize function should be pure, or have no impact outside of the function (i.e. side effects.)finalize功能应该是纯的,或者在功能之外没有影响(即副作用)finalize function can access the variables defined in the scope parameter.finalize函数可以访问scope参数中定义的变量。mapReduce no longer supports the deprecated BSON type JavaScript code with scope (BSON type 15) for its functions. mapReduce不再支持不推荐的BSON类型JavaScript代码,其功能的作用域为(BSON类型15)。finalize function must be either BSON type String (BSON type 2) or BSON type JavaScript (BSON type 13). finalize函数必须是BSON类型字符串(BSON类型2)或BSON类型JavaScript(BSON类型13)。finalize function, use the scope parameter.finalize函数中访问的常量值,请使用scope参数。
finalize function has been deprecated since version 4.2.1.finalize函数作用域的JavaScript代码。Aggregation Pipeline as Alternative聚合管道作为替代方案
Aggregation pipeline provides better performance and a simpler interface than map-reduce, and map-reduce expressions can be rewritten using aggregation pipeline operators such as 聚合管道提供了比map-reduce更好的性能和更简单的接口,并且可以使用聚合管道运算符(如$group, $merge, and others.$group、$merge等)重写map-reduce表达式。
For map-reduce expressions that require custom functionality, MongoDB provides the 对于需要自定义功能的map reduce表达式,MongoDB从4.4版开始提供$accumulator and $function aggregation operators starting in version 4.4. $accumulator和$function聚合运算符。These operators provide the ability to define custom aggregation expressions in JavaScript.这些运算符提供了在JavaScript中定义自定义聚合表达式的能力。
The examples in this section include aggregation pipeline alternatives without custom aggregation expressions. 本节中的示例包括没有自定义聚合表达式的聚合管道替代方案。For alternatives that use custom expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义表达式的替代方案,请参阅Map-Reduce到聚合管道转换示例。
Create a sample collection 使用以下文档创建样本集合orders with these documents:orders:
Perform the map-reduce operation on the 对orders collection to group by the cust_id, and calculate the sum of the price for each cust_id:orders集合执行map-reduce操作,以按cust_id分组,并计算每个cust_id的价格总和:
this refers to the document that the map-reduce operation is processing.this指的是map-reduce操作正在处理的文档。price to the cust_id for each document and emits the cust_id and price.price映射到cust_id,并发出cust_id和price。keyCustId and valuesPrices:keyCustId和valuesPrice定义相应的reduce函数:
valuesPrices is an array whose elements are the price values emitted by the map function and grouped by keyCustId.valuesPrices是一个数组,其元素是map函数发出的price值,并按keyCustId分组。valuesPrice array to the sum of its elements.valuesPrice数组减少为其元素之和。orders collection using the mapFunction1 map function and the reduceFunction1 reduce function:mapFunction1 map函数和reduceFunction1 reduce函数对orders集合中的所有文档执行map-reduce:
This operation outputs the results to a collection named 此操作将结果输出到名为map_reduce_example. map_reduce_example的集合。If the 如果map_reduce_example collection already exists, the operation will replace the contents with the results of this map-reduce operation.map_reduce_example集合已存在,则该操作将用该map reduce操作的结果替换内容。
map_reduce_example collection to verify the results:map_reduce_example集合以验证结果:
The operation returns these documents:该操作将返回以下文档:
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,可以重写map reduce操作,而无需定义自定义函数:
$group stage groups by the cust_id and calculates the value field using $sum. $group阶段按cust_id分组,并使用$sum计算值字段。value field contains the total price for each cust_id.value字段包含每个cust_id的总价。
This stage outputs these documents to the next stage:本阶段将这些文件输出到下一阶段:
$out writes the output to the collection agg_alternative_1. $out将输出写入集合agg_alternative_1。$merge instead of $out.$merge而不是$out。agg_alternative_1 collection to verify the results:agg_alternative_1集合以验证结果:
The operation returns these documents:该操作将返回以下文档:
See also参阅
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方法,请参阅Map-Reduce到聚合管道转换示例。
In the following example, you will see a map-reduce operation on the 在以下示例中,您将看到orders collection for all documents that have an ord_date value greater than or equal to 2020-03-01.orders集合上的ord_date值大于或等于2020-03-01的所有文档的map-reduce操作。
The operation in the example:示例中的操作如下:
item.sku field, and calculates the number of orders and the total quantity ordered for each sku.item.sku字段分组,并计算每个sku的订单数量和订购总量。sku value and merges the results into the output collection.sku值的每个订单的平均数量,并将结果合并到输出集合中。When merging results, if an existing document has the same key as the new result, the operation overwrites the existing document. 合并结果时,如果现有文档与新结果具有相同的键,则该操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同密钥的现有文档,则该操作将插入该文档。
Example steps:示例步骤:
this refers to the document that the map-reduce operation is processing.this指的是map-reduce操作正在处理的文档。sku with a new object value that contains the count of 1 and the item qty for the order and emits the sku (stored in the key) and the value.sku与一个新的对象value相关联,该对象值包含订单的count 1和商品qty,并发出sku(存储在key中)和value。keySKU and countObjVals:keySKU和countObjVals定义相应的reduce函数:
countObjValskeySKU values passed by map function to the reducer function.keySKU值的对象。countObjVals array to a single object reducedValue that contains the count and the qty fields.countObjVals数组缩减为一个对象reducedValue,其中包含count和qty字段。reducedVal, the count field contains the sum of the count fields from the individual array elements, and the qty field contains the sum of the qty fields from the individual array elements.reducedVal中,count字段包含单个数组元素的count字段之和,qty字段包含单个数组元素的qty字段之和。key and reducedVal. key和reducedVal的finalize函数。reducedVal object to add a computed field named avg and returns the modified object:reducedVal对象以添加名为avg的计算字段,并返回修改后的对象:
orders collection using the mapFunction2, reduceFunction2, and finalizeFunction2 functions:mapFunction2、reduceFunction2和finalizeFunction2函数对orders集合执行map-reduce操作:
This operation uses the 此操作使用query field to select only those documents with ord_date greater than or equal to new Date("2020-03-01"). query字段仅选择ord_date大于或等于new Date("2020-03-01")的文档。Then it outputs the results to a collection 然后,它将结果输出到集合map_reduce_example2.map_reduce_example2。
If the 如果map_reduce_example2 collection already exists, the operation will merge the existing contents with the results of this map-reduce operation. map_reduce_example2集合已经存在,该操作将把现有内容与map-reduce操作的结果合并。That is, if an existing document has the same key as the new result, the operation overwrites the existing document. 也就是说,如果现有文档具有与新结果相同的密钥,则该操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同密钥的现有文档,则该操作将插入该文档。
map_reduce_example2 collection to verify the results:map_reduce_example2集合以验证结果:
The operation returns these documents:该操作将返回以下文档:
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,可以重写map-reduce操作,而无需定义自定义函数:
$match stage selects only those documents with ord_date greater than or equal to new Date("2020-03-01").$match阶段仅选择ord_date大于或等于new Date("2020-03-01")的文件。$unwinds stage breaks down the document by the items array field to output a document for each array element. $unwinds阶段按items数组字段分解文档,为每个数组元素输出一个文档。$group stage groups by the items.sku, calculating for each sku:$group阶段按items.sku分组,计算每个sku:
qty field. qty字段。qty field contains the total qty ordered per each items.sku using $sum.qty字段包含使用$sum计算的每个item.sku的总订购数量。orders_ids array. orders_id数组。orders_ids field contains an array of distinct order _id’s for the items.sku using $addToSet.orders_ids字段包含使用$addToSet计算的items.sku的不同订单_id数组。$project stage reshapes the output document to mirror the map-reduce’s output to have two fields _id and value. $project阶段对输出文档进行重塑,以镜像map-reduce的输出,使其具有两个字段_id和value。$project sets:$project设置:
$merge writes the output to the collection agg_alternative_3. $merge将输出写入集合agg_alternative_3。_id as the new result, the operation overwrites the existing document. _id与新结果相同,则该操作将覆盖现有文档。agg_alternative_3 collection to verify the results:agg_alternative_3集合以验证结果:
The operation returns these documents:该操作将返回以下文档:
See also参阅
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方法,请参阅Map-Reduce到聚合管道转换示例。
The output of the db.collection.mapReduce() method is identical to that of the mapReduce command. db.collection.mapReduce()方法的输出与mapReduce命令的输出相同。See the Output section of the 有关mapReduce command for information on the db.collection.mapReduce() output.db.collection.mapReduce()输出的信息,请参阅mapReduce命令的输出部分。
MongoDB drivers automatically set afterClusterTime for operations associated with causally consistent sessions. MongoDB驱动程序会自动为与因果一致会话相关的操作设置afterClusterTime。Starting in MongoDB 4.2, the 从MongoDB 4.2开始,db.collection.mapReduce() no longer support afterClusterTime. db.collection.mapReduce()不再支持afterClusterTime。As such, 因此,db.collection.mapReduce() cannot be associatd with causally consistent sessions.db.collection.mapReduce()不能与因果一致的会话相关联。