On this page本页内容
db.collection.
mapReduce
(map, reduce, { <options> })¶mongo
Shell Method方法
This page documents the 此页面记录了mongo
shell method, and does not refer to the MongoDB Node.js driver (or any other driver) method. mongo
shell方法,未提及MongoDB Node.js驱动程序(或任何其他驱动程序)方法。For corresponding MongoDB driver API, refer to your specific MongoDB driver documentation instead.有关相应的MongoDB驱动程序API,请参阅特定的MongoDB驱动程序文档。
The db.collection.mapReduce()
method provides a wrapper around the mapReduce
command.db.collection.mapReduce()
方法提供了mapReduce
e命令的包装器。
Aggregation Pipeline as Alternative聚合管道作为替代方案
Aggregation pipeline provides better performance and a more coherent interface than map-reduce, and map-reduce expressions can be rewritten using aggregation pipeline operators, such as 聚合管道提供了比map-reduce更好的性能和更一致的接口,并且可以使用聚合管道运算符(如$group
, $merge
, etc.$group
、$merge
等)重写map-reduce表达式。
For map-reduce expressions that require custom functionality, MongoDB provides the 对于需要自定义功能的map reduce表达式,MongoDB从4.4版开始提供$accumulator
and $function
aggregation operators starting in version 4.4. $accumulator
和$function
聚合运算符。These operators provide users with the ability to define custom aggregation expressions in JavaScript.这些运算符使用户能够在JavaScript中定义自定义聚合表达式。
For examples of aggregation alternatives to map-reduce operations, see Map-Reduce Examples. 有关映射减少操作的聚合替代方案的示例,请参阅映射减少示例。See also Map-Reduce to Aggregation Pipeline.另请参见映射-减少到聚合管道。
Note
Starting in version 4.4, MongoDB ignores the verbose option.从版本4.4开始,MongoDB将忽略verbose选项。
Starting in version 4.2, MongoDB deprecates:从4.2版开始,MongoDB不推荐:
map-reduce
选项创建新的分片集合,以及使用sharded
选项进行map-reduce。nonAtomic: false
选项的显式说明。db.collection.mapReduce()
has the following syntax:语法如下所示:
db.collection.mapReduce()
takes the following parameters:采用以下参数:
map |
JavaScript |
|
reduce |
JavaScript |
|
options |
document | db.collection.mapReduce() .db.collection.mapReduce() 指定其他参数的文档。 |
The following table describes additional arguments that 下表介绍了db.collection.mapReduce()
can accept.db.collection.mapReduce()
可以接受的其他参数。
out |
string or document |
|
query |
document | map function.map 函数的文档。 |
sort |
document | |
limit |
number | map function.map 函数输入的最大文档数。 |
finalize |
Javascript or String |
|
scope |
document | map , reduce and finalize functions.map 、reduce 和finalize 函数中访问的全局变量。 |
jsMode |
boolean |
|
verbose |
boolean |
|
collation |
document |
Collation
|
bypassDocumentValidation |
boolean |
|
Note
map-reduce operations
and 和$where
operator expressions cannot access certain global functions or properties, such as 运算符表达式无法访问db
, that are available in the mongo
shell.mongo
shell中可用的某些全局函数或属性,例如db。
The following JavaScript functions and properties are available to 以下JavaScript函数和属性可用于map-reduce操作和map-reduce operations
and $where
operator expressions:$where
运算符表达式:
args MaxKey MinKey |
assert() BinData() DBPointer() DBRef() doassert() emit() gc() HexData() hex_md5() isNumber() isObject() ISODate() isString() |
Map() MD5() NumberInt() NumberLong() ObjectId() print() printjson() printjsononeline() sleep() Timestamp() tojson() tojsononeline() tojsonObject() UUID() version() |
map
Functionmap
函数的要求¶The map
function is responsible for transforming each input document into zero or more documents. map
函数负责将每个输入文档转换为零个或多个文档。It can access the variables defined in the 它可以访问scope
parameter, and has the following prototype:scope
参数中定义的变量,并具有以下原型:
The map
function has the following requirements:map
函数具有以下要求:
map
function, reference the current document as this
within the function.map
函数中,将当前文档引用为函数中的this
。map
function should not access the database for any reason.map
函数不应出于任何原因访问数据库。map
function should be pure, or have no impact outside of the function (i.e. side effects.)map
功能应该是纯的,或者在功能之外没有影响(即副作用)map
function may optionally call emit(key,value)
any number of times to create an output document associating key
with value
.map
函数可以选择调用emit(key,value)
任意次数,以创建将key
与value
关联的输出文档。mapReduce
no longer supports the deprecated BSON type JavaScript code with scope (BSON type 15) for its functions. mapReduce
不再支持不推荐的BSON类型JavaScript代码,其功能的作用域为(BSON类型15)。map
function must be either BSON type String (BSON type 2) or BSON type JavaScript (BSON type 13). map
函数必须是BSON类型字符串(BSON类型2)或BSON类型JavaScript(BSON类型13)。map
function, use the scope
parameter.map
函数中访问的常量值,请使用scope
参数。
map
function has been deprecated since version 4.2.1.map
函数作用域的JavaScript代码。The following 根据输入文档map
function will call emit(key,value)
either 0 or 1 times depending on the value of the input document’s status
field:status
字段的值,以下map
函数将调用emit(key,value)
0次或1次:
The following 以下map
function may call emit(key,value)
multiple times depending on the number of elements in the input document’s items
field:map
函数可能会多次调用emit(key,value)
,具体取决于输入文档的items
字段中的元素数:
reduce
Functionreduce
函数的要求¶The reduce
function has the following prototype:reduce
函数具有以下原型:
The reduce
function exhibits the following behaviors:reduce
函数表现出以下行为:
reduce
function should not access the database, even to perform read operations.reduce
函数不应该访问数据库,甚至不应该执行读取操作。reduce
function should not affect the outside system.reduce
函数不应影响外部系统。reduce
function for a key that has only a single value. reduce
函数。values
argument is an array whose elements are the value
objects that are “mapped” to the key
.values
参数是一个数组,其元素是“映射”到key
的value
对象。reduce
function more than once for the same key. key
多次调用reduce
函数。reduce
function for that key will become one of the input values to the next reduce
function invocation for that key.reduce
函数的前一个输出将成为该键的下一个reduce
函数调用的输入值之一。reduce
function can access the variables defined in the scope
parameter.reduce
函数可以访问scope
参数中定义的变量。reduce
must not be larger than half of MongoDB’s maximum BSON document size. reduce
的输入不能超过MongoDB最大BSON文档大小的一半。reduce
steps.reduce
步骤中将其连接在一起时,可能会违反此要求。mapReduce
no longer supports the deprecated BSON type JavaScript code with scope (BSON type 15) for its functions. mapReduce
不再支持不推荐的BSON类型JavaScript代码,其功能的作用域为(BSON类型15)。reduce
function must be either BSON type String (BSON type 2) or BSON type JavaScript (BSON type 13). reduce
函数必须是BSON类型字符串(BSON类型2)或BSON类型JavaScript(BSON类型13)。reduce
function, use the scope
parameter.reduce
函数中访问的常量值,请使用scope
参数。
reduce
function has been deprecated since version 4.2.1.reduce
函数作用域的JavaScript代码。Because it is possible to invoke the 因为可以对同一个键多次调用reduce
function more than once for the same key, the following properties need to be true:reduce
函数,所以以下属性必须为true
:
value
emitted by the map
function.map
函数发出的value
的类型相同。reduce
function must be associative. reduce
函数必须是关联的。reduce
function must be idempotent. reduce
函数必须是幂等函数。reduce
function should be commutative: that is, the order of the elements in the valuesArray
should not affect the output of the reduce
function, so that the following statement is true:reduce
函数应该是可交换的:也就是说,valuesArray
中元素的顺序不应该影响reduce
函数的输出,因此下面的语句是正确的:
out
You can specify the following options for the 可以为out
parameter:out
参数指定以下选项:
This option outputs to a new collection, and is not available on secondary members of replica sets.此选项输出到新集合,在副本集的辅助成员上不可用。
Note
Starting in version 4.2, MongoDB deprecates:从4.2版开始,MongoDB不推荐:
nonAtomic: false
选项的显式说明。This option is only available when passing a collection that already exists to 仅当将已存在的集合传递给out
. out
时,此选项才可用。It is not available on secondary members of replica sets.它在副本集的辅助成员上不可用。
When you output to a collection with an action, the 当通过操作输出到集合时,out
has the following parameters:out
具有以下参数:
<action>
replace
Replace the contents of the 如果存在具有<collectionName>
if the collection with the <collectionName>
exists.<collectionName>
的集合,则替换<collectionName>
的内容。
merge
Merge the new result with the existing result if the output collection already exists. 如果输出集合已存在,则将新结果与现有结果合并。If an existing document has the same key as the new result, overwrite that existing document.如果现有文档的密钥与新结果相同,请覆盖该现有文档。
reduce
Merge the new result with the existing result if the output collection already exists. 如果输出集合已存在,则将新结果与现有结果合并。If an existing document has the same key as the new result, apply the 如果现有文档与新结果具有相同的密钥,请对新文档和现有文档应用reduce
function to both the new and the existing documents and overwrite the existing document with the result.reduce
函数,并用结果覆盖现有文档。
db
:
Optional. 可选。The name of the database that you want the map-reduce operation to write its output. 希望map reduce操作写入其输出的数据库的名称。By default this will be the same database as the input collection.默认情况下,这将是与输入集合相同的数据库。
sharded
:
Note
Starting in version 4.2, the use of the 从4.2版开始,不推荐使用sharded
option is deprecated.sharded
选项。
Optional. 可选。If 如果为true
and you have enabled sharding on output database, the map-reduce operation will shard the output collection using the _id
field as the shard key.true
,并且您已经在输出数据库上启用了分片,则map-reduce操作将使用_id
字段作为分片键对输出集合进行分片。
If 如果true
and collectionName
is an existing unsharded collection, map-reduce fails.true
和collectionName
是现有的未分片集合,则map-reduce将失败。
nonAtomic
:
Note
Starting in MongoDB 4.2, explicitly setting nonAtomic
to false
is deprecated.
Optional. 可选。Specify output operation as non-atomic. 将输出操作指定为非原子操作。This applies only to the 这仅适用于merge
and reduce
output modes, which may take minutes to execute.merge
和“reduce
输出模式,这可能需要几分钟才能执行。
By default 默认情况下,nonAtomic
is false
, and the map-reduce operation locks the database during post-processing.nonAtomic
为false
,map-reduce操作在后处理期间锁定数据库。
If 如果nonAtomic
is true
, the post-processing step prevents MongoDB from locking the database: during this time, other clients will be able to read intermediate states of the output collection.nonAtomic
为true
,则后处理步骤将阻止MongoDB锁定数据库:在此期间,其他客户端将能够读取输出集合的中间状态。
Perform the map-reduce operation in memory and return the result. 在内存中执行map-reduce操作并返回结果。This option is the only available option for 此选项是复制集的次要成员上out
on secondary members of replica sets.out
的唯一可用选项
The result must fit within the maximum size of a BSON document.结果必须符合BSON文档的最大大小。
finalize
Functionfinalize
函数的要求¶The finalize
function has the following prototype:finalize
函数具有以下原型:
The finalize
function receives as its arguments a key
value and the reducedValue
from the reduce
function. finalize
函数从reduce
函数接收key
值和reducedValue
作为其参数。Be aware that:
finalize
function should not access the database for any reason.finalize
函数不应出于任何原因访问数据库。finalize
function should be pure, or have no impact outside of the function (i.e. side effects.)finalize
功能应该是纯的,或者在功能之外没有影响(即副作用)finalize
function can access the variables defined in the scope
parameter.finalize
函数可以访问scope
参数中定义的变量。mapReduce
no longer supports the deprecated BSON type JavaScript code with scope (BSON type 15) for its functions. mapReduce
不再支持不推荐的BSON类型JavaScript代码,其功能的作用域为(BSON类型15)。finalize
function must be either BSON type String (BSON type 2) or BSON type JavaScript (BSON type 13). finalize
函数必须是BSON类型字符串(BSON类型2)或BSON类型JavaScript(BSON类型13)。finalize
function, use the scope
parameter.finalize
函数中访问的常量值,请使用scope
参数。
finalize
function has been deprecated since version 4.2.1.finalize
函数作用域的JavaScript代码。Aggregation Pipeline as Alternative聚合管道作为替代方案
Aggregation pipeline provides better performance and a simpler interface than map-reduce, and map-reduce expressions can be rewritten using aggregation pipeline operators such as 聚合管道提供了比map-reduce更好的性能和更简单的接口,并且可以使用聚合管道运算符(如$group
, $merge
, and others.$group
、$merge
等)重写map-reduce表达式。
For map-reduce expressions that require custom functionality, MongoDB provides the 对于需要自定义功能的map reduce表达式,MongoDB从4.4版开始提供$accumulator
and $function
aggregation operators starting in version 4.4. $accumulator
和$function
聚合运算符。These operators provide the ability to define custom aggregation expressions in JavaScript.这些运算符提供了在JavaScript中定义自定义聚合表达式的能力。
The examples in this section include aggregation pipeline alternatives without custom aggregation expressions. 本节中的示例包括没有自定义聚合表达式的聚合管道替代方案。For alternatives that use custom expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义表达式的替代方案,请参阅Map-Reduce到聚合管道转换示例。
Create a sample collection 使用以下文档创建样本集合orders
with these documents:orders
:
Perform the map-reduce operation on the 对orders
collection to group by the cust_id
, and calculate the sum of the price
for each cust_id
:orders
集合执行map-reduce操作,以按cust_id
分组,并计算每个cust_id
的价格总和:
this
refers to the document that the map-reduce operation is processing.this
指的是map-reduce操作正在处理的文档。price
to the cust_id
for each document and emits the cust_id
and price
.price
映射到cust_id
,并发出cust_id
和price
。keyCustId
and valuesPrices
:keyCustId
和valuesPrice
定义相应的reduce函数:
valuesPrices
is an array whose elements are the price
values emitted by the map function and grouped by keyCustId
.valuesPrices
是一个数组,其元素是map
函数发出的price
值,并按keyCustId
分组。valuesPrice
array to the sum of its elements.valuesPrice
数组减少为其元素之和。orders
collection using the mapFunction1
map function and the reduceFunction1
reduce function:mapFunction1
map函数和reduceFunction1
reduce函数对orders
集合中的所有文档执行map-reduce:
This operation outputs the results to a collection named 此操作将结果输出到名为map_reduce_example
. map_reduce_example
的集合。If the 如果map_reduce_example
collection already exists, the operation will replace the contents with the results of this map-reduce operation.map_reduce_example
集合已存在,则该操作将用该map reduce操作的结果替换内容。
map_reduce_example
collection to verify the results:map_reduce_example
集合以验证结果:
The operation returns these documents:该操作将返回以下文档:
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,可以重写map reduce操作,而无需定义自定义函数:
$group
stage groups by the cust_id
and calculates the value
field using $sum
. $group
阶段按cust_id
分组,并使用$sum
计算值字段。value
field contains the total price
for each cust_id
.value
字段包含每个cust_id
的总价。
This stage outputs these documents to the next stage:本阶段将这些文件输出到下一阶段:
$out
writes the output to the collection agg_alternative_1
. $out
将输出写入集合agg_alternative_1
。$merge
instead of $out
.$merge
而不是$out
。agg_alternative_1
collection to verify the results:agg_alternative_1
集合以验证结果:
The operation returns these documents:该操作将返回以下文档:
See also参阅
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方法,请参阅Map-Reduce到聚合管道转换示例。
In the following example, you will see a map-reduce operation on the 在以下示例中,您将看到orders
collection for all documents that have an ord_date
value greater than or equal to 2020-03-01
.orders
集合上的ord_date
值大于或等于2020-03-01
的所有文档的map-reduce操作。
The operation in the example:示例中的操作如下:
item.sku
field, and calculates the number of orders and the total quantity ordered for each sku
.item.sku
字段分组,并计算每个sku
的订单数量和订购总量。sku
value and merges the results into the output collection.sku
值的每个订单的平均数量,并将结果合并到输出集合中。When merging results, if an existing document has the same key as the new result, the operation overwrites the existing document. 合并结果时,如果现有文档与新结果具有相同的键,则该操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同密钥的现有文档,则该操作将插入该文档。
Example steps:示例步骤:
this
refers to the document that the map-reduce operation is processing.this
指的是map-reduce操作正在处理的文档。sku
with a new object value
that contains the count
of 1
and the item qty
for the order and emits the sku
(stored in the key
) and the value
.sku
与一个新的对象value
相关联,该对象值包含订单的count
1
和商品qty
,并发出sku
(存储在key
中)和value
。keySKU
and countObjVals
:keySKU
和countObjVals
定义相应的reduce函数:
countObjVals
keySKU
values passed by map function to the reducer function.keySKU
值的对象。countObjVals
array to a single object reducedValue
that contains the count
and the qty
fields.countObjVals
数组缩减为一个对象reducedValue
,其中包含count
和qty
字段。reducedVal
, the count
field contains the sum of the count
fields from the individual array elements, and the qty
field contains the sum of the qty
fields from the individual array elements.reducedVal
中,count
字段包含单个数组元素的count
字段之和,qty
字段包含单个数组元素的qty
字段之和。key
and reducedVal
. key
和reducedVal
的finalize
函数。reducedVal
object to add a computed field named avg
and returns the modified object:reducedVal
对象以添加名为avg
的计算字段,并返回修改后的对象:
orders
collection using the mapFunction2
, reduceFunction2
, and finalizeFunction2
functions:mapFunction2
、reduceFunction2
和finalizeFunction2
函数对orders
集合执行map-reduce操作:
This operation uses the 此操作使用query
field to select only those documents with ord_date
greater than or equal to new Date("2020-03-01")
. query
字段仅选择ord_date
大于或等于new Date("2020-03-01")
的文档。Then it outputs the results to a collection 然后,它将结果输出到集合map_reduce_example2
.map_reduce_example2
。
If the 如果map_reduce_example2
collection already exists, the operation will merge the existing contents with the results of this map-reduce operation. map_reduce_example2
集合已经存在,该操作将把现有内容与map-reduce操作的结果合并。That is, if an existing document has the same key as the new result, the operation overwrites the existing document. 也就是说,如果现有文档具有与新结果相同的密钥,则该操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同密钥的现有文档,则该操作将插入该文档。
map_reduce_example2
collection to verify the results:map_reduce_example2
集合以验证结果:
The operation returns these documents:该操作将返回以下文档:
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,可以重写map-reduce操作,而无需定义自定义函数:
$match
stage selects only those documents with ord_date
greater than or equal to new Date("2020-03-01")
.$match
阶段仅选择ord_date
大于或等于new Date("2020-03-01")
的文件。$unwinds
stage breaks down the document by the items
array field to output a document for each array element. $unwinds
阶段按items
数组字段分解文档,为每个数组元素输出一个文档。$group
stage groups by the items.sku
, calculating for each sku:$group
阶段按items.sku
分组,计算每个sku:
qty
field. qty
字段。qty
field contains the total qty
ordered per each items.sku
using $sum
.qty
字段包含使用$sum
计算的每个item.sku
的总订购数量。orders_ids
array. orders_id
数组。orders_ids
field contains an array of distinct order _id
’s for the items.sku
using $addToSet
.orders_ids
字段包含使用$addToSet
计算的items.sku
的不同订单_id
数组。$project
stage reshapes the output document to mirror the map-reduce’s output to have two fields _id
and value
. $project
阶段对输出文档进行重塑,以镜像map-reduce的输出,使其具有两个字段_id
和value
。$project
sets:$project
设置:
$merge
writes the output to the collection agg_alternative_3
. $merge
将输出写入集合agg_alternative_3
。_id
as the new result, the operation overwrites the existing document. _id
与新结果相同,则该操作将覆盖现有文档。agg_alternative_3
collection to verify the results:agg_alternative_3
集合以验证结果:
The operation returns these documents:该操作将返回以下文档:
See also参阅
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方法,请参阅Map-Reduce到聚合管道转换示例。
The output of the db.collection.mapReduce()
method is identical to that of the mapReduce
command. db.collection.mapReduce()
方法的输出与mapReduce
命令的输出相同。See the Output section of the 有关mapReduce
command for information on the db.collection.mapReduce()
output.db.collection.mapReduce()
输出的信息,请参阅mapReduce
命令的输出部分。
MongoDB drivers automatically set afterClusterTime for operations associated with causally consistent sessions. MongoDB驱动程序会自动为与因果一致会话相关的操作设置afterClusterTime。Starting in MongoDB 4.2, the 从MongoDB 4.2开始,db.collection.mapReduce()
no longer support afterClusterTime. db.collection.mapReduce()
不再支持afterClusterTime。As such, 因此,db.collection.mapReduce()
cannot be associatd with causally consistent sessions.db.collection.mapReduce()
不能与因果一致的会话相关联。