db.collection.mapReduce()

On this page本页内容

db.collection.mapReduce(map, reduce, { <options> })

mongo Shell Method方法

This page documents the mongo shell method, and does not refer to the MongoDB Node.js driver (or any other driver) method. 此页面记录了mongoshell方法,未提及MongoDB Node.js驱动程序(或任何其他驱动程序)方法。For corresponding MongoDB driver API, refer to your specific MongoDB driver documentation instead.有关相应的MongoDB驱动程序API,请参阅特定的MongoDB驱动程序文档。

The db.collection.mapReduce() method provides a wrapper around the mapReduce command.db.collection.mapReduce()方法提供了mapReducee命令的包装器。

Aggregation Pipeline as Alternative聚合管道作为替代方案

Aggregation pipeline provides better performance and a more coherent interface than map-reduce, and map-reduce expressions can be rewritten using aggregation pipeline operators, such as $group, $merge, etc.聚合管道提供了比map-reduce更好的性能和更一致的接口,并且可以使用聚合管道运算符(如$group$merge等)重写map-reduce表达式。

For map-reduce expressions that require custom functionality, MongoDB provides the $accumulator and $function aggregation operators starting in version 4.4. 对于需要自定义功能的map reduce表达式,MongoDB从4.4版开始提供$accumulator$function聚合运算符。These operators provide users with the ability to define custom aggregation expressions in JavaScript.这些运算符使用户能够在JavaScript中定义自定义聚合表达式。

For examples of aggregation alternatives to map-reduce operations, see Map-Reduce Examples. 有关映射减少操作的聚合替代方案的示例,请参阅映射减少示例See also Map-Reduce to Aggregation Pipeline.另请参见映射-减少到聚合管道

Note

Views do not support map-reduce operations.视图不支持映射-减少操作。

Syntax语法

Note

Starting in version 4.4, MongoDB ignores the verbose option.从版本4.4开始,MongoDB将忽略verbose选项。

Starting in version 4.2, MongoDB deprecates:从4.2版开始,MongoDB不推荐:

  • The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. 使用map-reduce选项创建新的分片集合,以及使用sharded选项进行map-reduce。To output to a sharded collection, create the sharded collection first. 要输出到分片集合,请先创建分片集合。MongoDB 4.2 also deprecates the replacement of an existing sharded collection.MongoDB 4.2还反对替换现有的分片集合。
  • The explicit specification of nonAtomic: false option.nonAtomic: false选项的显式说明。

db.collection.mapReduce() has the following syntax:语法如下所示:

db.collection.mapReduce(
                         <map>,
                         <reduce>,
                         {
                           out: <collection>,
                           query: <document>,
                           sort: <document>,
                           limit: <number>,
                           finalize: <function>,
                           scope: <document>,
                           jsMode: <boolean>,
                           verbose: <boolean>,
                           bypassDocumentValidation: <boolean>
                         }
                       )

db.collection.mapReduce() takes the following parameters:采用以下参数:

Parameter参数Type类型Description描述
map JavaScript or String

A JavaScript function that associates or “maps” a value with a key and emits the key and value pair. 一个JavaScript函数,将一个value与一个key关联或“映射”,并发出键值对。You can specify the function as BSON type JavaScript (i.e. BSON type 13) or String (i.e. BSON type 2).可以将函数指定为BSON类型JavaScript(即BSON类型13)或字符串(即BSON类型2)。

See Requirements for the map Function for more information.有关更多信息,请参阅map函数的要求

reduce JavaScript or String

A JavaScript function that “reduces” to a single object all the values associated with a particular key. 一个JavaScript函数,将与特定key关联的所有values“减少”为单个对象。You can specify the function as BSON type JavaScript (i.e. BSON type 13) or String (i.e. BSON type 2).可以将函数指定为BSON类型JavaScript(即BSON类型13)或字符串(即BSON类型2)。

See Requirements for the reduce Function for more information.有关更多信息,请参阅reduce函数的要求

options document A document that specifies additional parameters to db.collection.mapReduce().db.collection.mapReduce()指定其他参数的文档。

The following table describes additional arguments that db.collection.mapReduce() can accept.下表介绍了db.collection.mapReduce()可以接受的其他参数。

Field字段Type类型Description描述
out string or document

Specifies the location of the result of the map-reduce operation. 指定映射减少操作结果的位置。You can output to a collection, output to a collection with an action, or output inline. 您可以输出到集合、通过操作输出到集合或内联输出。You may output to a collection when performing map-reduce operations on the primary members of the set; on secondary members you may only use the inline output.在对集合的主要成员执行map-reduce操作时,可以输出到集合;在次要成员上,只能使用内联输出。

See out Options for more information.有关更多信息,请参阅out选项

query document Specifies the selection criteria using query operators for determining the documents input to the map function.使用查询运算符指定选择条件,以确定输入到map函数的文档。
sort document Sorts the input documents. 输入文档进行排序。This option is useful for optimization. 此选项对于优化非常有用。For example, specify the sort key to be the same as the emit key so that there are fewer reduce operations. 例如,将排序键指定为与发射键相同,以减少reduce操作。The sort key must be in an existing index for this collection.排序键必须位于此集合的现有索引中。
limit number Specifies a maximum number of documents for the input into the map function.指定map函数输入的最大文档数。
finalize Javascript or String

Optional.可选。A JavaScript function that modifies the output after the reduce function. reduce函数之后修改输出的JavaScript函数。You can specify the function as BSON type JavaScript (i.e. BSON type 13) or String (i.e. BSON type 2).可以将函数指定为BSON类型JavaScript(即BSON类型13)或字符串(即BSON类型2)。

See Requirements for the finalize Function for more information.有关更多信息,请参阅finalize函数的要求

scope document Specifies global variables that are accessible in the map, reduce and finalize functions.指定可在mapreducefinalize函数中访问的全局变量。
jsMode boolean

Specifies whether to convert intermediate data into BSON format between the execution of the map and reduce functions.指定是否在执行mapreduce函数之间将中间数据转换为BSON格式。

Defaults to false.默认为false

If false:如果为false

  • Internally, MongoDB converts the JavaScript objects emitted by the map function to BSON objects. 在内部,MongoDB将map函数发出的JavaScript对象转换为BSON对象。These BSON objects are then converted back to JavaScript objects when calling the reduce function.然后,在调用reduce函数时,这些BSON对象被转换回JavaScript对象。
  • The map-reduce operation places the intermediate BSON objects in temporary, on-disk storage. map reduce操作将中间BSON对象放置在临时磁盘存储中。This allows the map-reduce operation to execute over arbitrarily large data sets.这允许map-reduce操作在任意大的数据集上执行。

If true:如果为true

  • Internally, the JavaScript objects emitted during map function remain as JavaScript objects. 在内部,map函数期间发出的JavaScript对象仍然是JavaScript对象。There is no need to convert the objects for the reduce function, which can result in faster execution.不需要为reduce函数转换对象,这样可以加快执行速度。
  • You can only use jsMode for result sets with fewer than 500,000 distinct key arguments to the mapper’s emit() function.只能对映射器的emit()函数的不同key参数少于500000的结果集使用jsMode
verbose boolean

Specifies whether to include the timing information in the result information. 指定是否在结果信息中包含timing(计时)信息。Set verbose to true to include the timing information.verbose设置为true以包含timing信息。

Defaults to false.默认为false

Starting in MongoDB 4.4, this option is ignored. 从MongoDB 4.4开始,这个选项被忽略。The result information always excludes the timing information. 结果信息始终排除timing信息。You can view timing information by running db.collection.explain() with db.collection.mapReduce() in the "executionStats" or "allPlansExecution" verbosity modes.您可以通过在verbosity模式为"executionStats""allPlansExecution"的情况下运行db.collection.explain()db.collection.mapReduce()来查看计时信息。

collation document

Optional.可选。

Specifies the collation to use for the operation.指定要用于该操作的排序规则

Collation allows users to specify language-specific rules for string comparison, such as rules for lettercase and accent marks.允许用户为字符串比较指定特定于语言的规则,例如字母大小写和重音符号的规则。

The collation option has the following syntax:collation选项语法如下所示:

collation: {
   locale: <string>,
   caseLevel: <boolean>,
   caseFirst: <string>,
   strength: <int>,
   numericOrdering: <boolean>,
   alternate: <string>,
   maxVariable: <string>,
   backwards: <boolean>
}

When specifying collation, the locale field is mandatory; all other collation fields are optional. 指定排序规则时,locale字段是必需的;所有其他排序规则字段都是可选的。For descriptions of the fields, see Collation Document.有关这些字段的描述,请参阅排序规则文档

If the collation is unspecified but the collection has a default collation (see db.createCollection()), the operation uses the collation specified for the collection.如果未指定排序规则,但集合具有默认排序规则(请参见db.createCollection()),则操作将使用为集合指定的排序规则。

If no collation is specified for the collection or for the operations, MongoDB uses the simple binary comparison used in prior versions for string comparisons.如果没有为集合或操作指定排序规则,MongoDB将使用以前版本中用于字符串比较的简单二进制比较。

You cannot specify multiple collations for an operation. 不能为一个操作指定多个排序规则。For example, you cannot specify different collations per field, or if performing a find with a sort, you cannot use one collation for the find and another for the sort.例如,不能为每个字段指定不同的排序规则,或者如果使用排序执行查找,则不能对查找使用一种排序规则,对排序使用另一种排序规则。

New in version 3.4.版本3.4中的新功能。

bypassDocumentValidation boolean

Optional.可选。Enables mapReduce to bypass document validation during the operation. 允许mapReduce在操作过程中绕过文档验证。This lets you insert documents that do not meet the validation requirements.这样可以插入不符合验证要求的文档。

New in version 3.2.版本3.2中的新功能。

Note

map-reduce operations and $where operator expressions cannot access certain global functions or properties, such as db, that are available in the mongo shell.运算符表达式无法访问mongo shell中可用的某些全局函数或属性,例如db。

The following JavaScript functions and properties are available to map-reduce operations and $where operator expressions:以下JavaScript函数和属性可用于map-reduce操作和$where运算符表达式:

Available Properties可用属性Available Functions可用函数 
args
MaxKey
MinKey
assert()
BinData()
DBPointer()
DBRef()
doassert()
emit()
gc()
HexData()
hex_md5()
isNumber()
isObject()
ISODate()
isString()
Map()
MD5()
NumberInt()
NumberLong()
ObjectId()
print()
printjson()
printjsononeline()
sleep()
Timestamp()
tojson()
tojsononeline()
tojsonObject()
UUID()
version()

Requirements for the map Functionmap函数的要求

The map function is responsible for transforming each input document into zero or more documents. map函数负责将每个输入文档转换为零个或多个文档。It can access the variables defined in the scope parameter, and has the following prototype:它可以访问scope参数中定义的变量,并具有以下原型:

function() {
   ...
   emit(key, value);
}

The map function has the following requirements:map函数具有以下要求:

The following map function will call emit(key,value) either 0 or 1 times depending on the value of the input document’s status field:根据输入文档status字段的值,以下map函数将调用emit(key,value)0次或1次:

function() {
    if (this.status == 'A')
        emit(this.cust_id, 1);
}

The following map function may call emit(key,value) multiple times depending on the number of elements in the input document’s items field:以下map函数可能会多次调用emit(key,value),具体取决于输入文档的items字段中的元素数:

function() {
    this.items.forEach(function(item){ emit(item.sku, 1); });
}

Requirements for the reduce Functionreduce函数的要求

The reduce function has the following prototype:reduce函数具有以下原型:

function(key, values) {
   ...
   return result;
}

The reduce function exhibits the following behaviors:reduce函数表现出以下行为:

Because it is possible to invoke the reduce function more than once for the same key, the following properties need to be true:因为可以对同一个键多次调用reduce函数,所以以下属性必须为true

out Options选项

You can specify the following options for the out parameter:可以为out参数指定以下选项:

Output to a Collection输出到集合

This option outputs to a new collection, and is not available on secondary members of replica sets.此选项输出到新集合,在副本集的辅助成员上不可用。

out: <collectionName>

Output to a Collection with an Action输出到具有操作的集合

Note

Starting in version 4.2, MongoDB deprecates:从4.2版开始,MongoDB不推荐:

  • The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. 使用map-reduce选项创建新的分片集合,以及使用分片选项进行map-reduce。To output to a sharded collection, create the sharded collection first. 要输出到分片集合,请首先创建分片集合。MongoDB 4.2 also deprecates the replacement of an existing sharded collection.MongoDB 4.2还反对替换现有的分片集合。
  • The explicit specification of nonAtomic: false option.nonAtomic: false选项的显式说明。

This option is only available when passing a collection that already exists to out. 仅当将已存在的集合传递给out时,此选项才可用。It is not available on secondary members of replica sets.它在副本集的辅助成员上不可用。

out: { <action>: <collectionName>
        [, db: <dbName>]
        [, sharded: <boolean> ]
        [, nonAtomic: <boolean> ] }

When you output to a collection with an action, the out has the following parameters:当通过操作输出到集合时,out具有以下参数:

  • <action>: Specify one of the following actions::指定以下操作之一:

    • replace

      Replace the contents of the <collectionName> if the collection with the <collectionName> exists.如果存在具有<collectionName>的集合,则替换<collectionName>的内容。

    • merge

      Merge the new result with the existing result if the output collection already exists. 如果输出集合已存在,则将新结果与现有结果合并。If an existing document has the same key as the new result, overwrite that existing document.如果现有文档的密钥与新结果相同,请覆盖该现有文档。

    • reduce

      Merge the new result with the existing result if the output collection already exists. 如果输出集合已存在,则将新结果与现有结果合并。If an existing document has the same key as the new result, apply the reduce function to both the new and the existing documents and overwrite the existing document with the result.如果现有文档与新结果具有相同的密钥,请对新文档和现有文档应用reduce函数,并用结果覆盖现有文档。

  • db:

    Optional. 可选。The name of the database that you want the map-reduce operation to write its output. 希望map reduce操作写入其输出的数据库的名称。By default this will be the same database as the input collection.默认情况下,这将是与输入集合相同的数据库。

  • sharded:

    Note

    Starting in version 4.2, the use of the sharded option is deprecated.从4.2版开始,不推荐使用sharded选项。

    Optional. 可选。If true and you have enabled sharding on output database, the map-reduce operation will shard the output collection using the _id field as the shard key.如果为true,并且您已经在输出数据库上启用了分片,则map-reduce操作将使用_id字段作为分片键对输出集合进行分片。

    If true and collectionName is an existing unsharded collection, map-reduce fails.如果truecollectionName是现有的未分片集合,则map-reduce将失败。

  • nonAtomic:

    Note

    Starting in MongoDB 4.2, explicitly setting nonAtomic to false is deprecated.

    Optional. 可选。Specify output operation as non-atomic. 将输出操作指定为非原子操作。This applies only to the merge and reduce output modes, which may take minutes to execute.这仅适用于merge和“reduce输出模式,这可能需要几分钟才能执行。

    By default nonAtomic is false, and the map-reduce operation locks the database during post-processing.默认情况下,nonAtomicfalse,map-reduce操作在后处理期间锁定数据库。

    If nonAtomic is true, the post-processing step prevents MongoDB from locking the database: during this time, other clients will be able to read intermediate states of the output collection.如果nonAtomictrue,则后处理步骤将阻止MongoDB锁定数据库:在此期间,其他客户端将能够读取输出集合的中间状态。

Output Inline输出内联

Perform the map-reduce operation in memory and return the result. 在内存中执行map-reduce操作并返回结果。This option is the only available option for out on secondary members of replica sets.此选项是复制集的次要成员上out的唯一可用选项

out: { inline: 1 }

The result must fit within the maximum size of a BSON document.结果必须符合BSON文档的最大大小

Requirements for the finalize Functionfinalize函数的要求

The finalize function has the following prototype:finalize函数具有以下原型:

function(key, reducedValue) {
   ...
   return modifiedObject;
}

The finalize function receives as its arguments a key value and the reducedValue from the reduce function. finalize函数从reduce函数接收key值和reducedValue作为其参数。Be aware that:

Map-Reduce Examples映射减少示例

Aggregation Pipeline as Alternative聚合管道作为替代方案

Aggregation pipeline provides better performance and a simpler interface than map-reduce, and map-reduce expressions can be rewritten using aggregation pipeline operators such as $group, $merge, and others.聚合管道提供了比map-reduce更好的性能和更简单的接口,并且可以使用聚合管道运算符(如$group$merge等)重写map-reduce表达式。

For map-reduce expressions that require custom functionality, MongoDB provides the $accumulator and $function aggregation operators starting in version 4.4. 对于需要自定义功能的map reduce表达式,MongoDB从4.4版开始提供$accumulator$function聚合运算符。These operators provide the ability to define custom aggregation expressions in JavaScript.这些运算符提供了在JavaScript中定义自定义聚合表达式的能力。

The examples in this section include aggregation pipeline alternatives without custom aggregation expressions. 本节中的示例包括没有自定义聚合表达式的聚合管道替代方案。For alternatives that use custom expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义表达式的替代方案,请参阅Map-Reduce到聚合管道转换示例

Create a sample collection orders with these documents:使用以下文档创建样本集合orders

db.orders.insertMany([
   { _id: 1, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-01"), price: 25, items: [ { sku: "oranges", qty: 5, price: 2.5 }, { sku: "apples", qty: 5, price: 2.5 } ], status: "A" },
   { _id: 2, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-08"), price: 70, items: [ { sku: "oranges", qty: 8, price: 2.5 }, { sku: "chocolates", qty: 5, price: 10 } ], status: "A" },
   { _id: 3, cust_id: "Busby Bee", ord_date: new Date("2020-03-08"), price: 50, items: [ { sku: "oranges", qty: 10, price: 2.5 }, { sku: "pears", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 4, cust_id: "Busby Bee", ord_date: new Date("2020-03-18"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 5, cust_id: "Busby Bee", ord_date: new Date("2020-03-19"), price: 50, items: [ { sku: "chocolates", qty: 5, price: 10 } ], status: "A"},
   { _id: 6, cust_id: "Cam Elot", ord_date: new Date("2020-03-19"), price: 35, items: [ { sku: "carrots", qty: 10, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 7, cust_id: "Cam Elot", ord_date: new Date("2020-03-20"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 8, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 75, items: [ { sku: "chocolates", qty: 5, price: 10 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 9, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 55, items: [ { sku: "carrots", qty: 5, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 }, { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 10, cust_id: "Don Quis", ord_date: new Date("2020-03-23"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }
])

Return the Total Price Per Customer返回每个客户的总价

Perform the map-reduce operation on the orders collection to group by the cust_id, and calculate the sum of the price for each cust_id:orders集合执行map-reduce操作,以按cust_id分组,并计算每个cust_id的价格总和:

  1. Define the map function to process each input document:定义映射函数以处理每个输入文档:

    • In the function, this refers to the document that the map-reduce operation is processing.在函数中,this指的是map-reduce操作正在处理的文档。
    • The function maps the price to the cust_id for each document and emits the cust_id and price.该函数将每个文档的price映射到cust_id,并发出cust_idprice
    var mapFunction1 = function() {
       emit(this.cust_id, this.price);
    };
  2. Define the corresponding reduce function with two arguments keyCustId and valuesPrices:使用两个参数keyCustIdvaluesPrice定义相应的reduce函数:

    • The valuesPrices is an array whose elements are the price values emitted by the map function and grouped by keyCustId.valuesPrices是一个数组,其元素是map函数发出的price值,并按keyCustId分组。
    • The function reduces the valuesPrice array to the sum of its elements.该函数将valuesPrice数组减少为其元素之和。
    var reduceFunction1 = function(keyCustId, valuesPrices) {
       return Array.sum(valuesPrices);
    };
  3. Perform map-reduce on all documents in the orders collection using the mapFunction1 map function and the reduceFunction1 reduce function:使用mapFunction1 map函数和reduceFunction1 reduce函数对orders集合中的所有文档执行map-reduce:

    db.orders.mapReduce(
       mapFunction1,
       reduceFunction1,
       { out: "map_reduce_example" }
    )

    This operation outputs the results to a collection named map_reduce_example. 此操作将结果输出到名为map_reduce_example的集合。If the map_reduce_example collection already exists, the operation will replace the contents with the results of this map-reduce operation.如果map_reduce_example集合已存在,则该操作将用该map reduce操作的结果替换内容。

  4. Query the map_reduce_example collection to verify the results:查询map_reduce_example集合以验证结果:

    db.map_reduce_example.find().sort( { _id: 1 } )

    The operation returns these documents:该操作将返回以下文档:

    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Busby Bee", "value" : 125 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Don Quis", "value" : 155 }

Aggregation Alternative聚合替代方案

Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,可以重写map reduce操作,而无需定义自定义函数:

db.orders.aggregate([
   { $group: { _id: "$cust_id", value: { $sum: "$price" } } },
   { $out: "agg_alternative_1" }
])
  1. The $group stage groups by the cust_id and calculates the value field using $sum. $group阶段按cust_id分组,并使用$sum计算值字段。The value field contains the total price for each cust_id.value字段包含每个cust_id的总价。

    This stage outputs these documents to the next stage:本阶段将这些文件输出到下一阶段:

    { "_id" : "Don Quis", "value" : 155 }
    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Busby Bee", "value" : 125 }
  2. Then, the $out writes the output to the collection agg_alternative_1. 然后,$out将输出写入集合agg_alternative_1Alternatively, you could use $merge instead of $out.或者,可以使用$merge而不是$out
  3. Query the agg_alternative_1 collection to verify the results:查询agg_alternative_1集合以验证结果:

    db.agg_alternative_1.find().sort( { _id: 1 } )

    The operation returns these documents:该操作将返回以下文档:

    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Busby Bee", "value" : 125 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Don Quis", "value" : 155 }

See also参阅

For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方法,请参阅Map-Reduce到聚合管道转换示例

Calculate Order and Total Quantity with Average Quantity Per Item用每件商品的平均数量计算订单和总数量

In the following example, you will see a map-reduce operation on the orders collection for all documents that have an ord_date value greater than or equal to 2020-03-01.在以下示例中,您将看到orders集合上的ord_date值大于或等于2020-03-01的所有文档的map-reduce操作。

The operation in the example:示例中的操作如下:

  1. Groups by the item.sku field, and calculates the number of orders and the total quantity ordered for each sku.item.sku字段分组,并计算每个sku的订单数量和订购总量。
  2. Calculates the average quantity per order for each sku value and merges the results into the output collection.计算每个sku值的每个订单的平均数量,并将结果合并到输出集合中。

When merging results, if an existing document has the same key as the new result, the operation overwrites the existing document. 合并结果时,如果现有文档与新结果具有相同的键,则该操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同密钥的现有文档,则该操作将插入该文档。

Example steps:示例步骤:

  1. Define the map function to process each input document:定义映射函数以处理每个输入文档:

    • In the function, this refers to the document that the map-reduce operation is processing.在函数中,this指的是map-reduce操作正在处理的文档。
    • For each item, the function associates the sku with a new object value that contains the count of 1 and the item qty for the order and emits the sku (stored in the key) and the value.对于每个商品,该函数将sku与一个新的对象value相关联,该对象值包含订单的count 1和商品qty,并发出sku(存储在key中)和value
     var mapFunction2 = function() {
        for (var idx = 0; idx < this.items.length; idx++) {
           var key = this.items[idx].sku;
           var value = { count: 1, qty: this.items[idx].qty };
    
           emit(key, value);
        }
    };
  2. Define the corresponding reduce function with two arguments keySKU and countObjVals:使用两个参数keySKUcountObjVals定义相应的reduce函数:

    • countObjVals is an array whose elements are the objects mapped to the grouped keySKU values passed by map function to the reducer function.是一个数组,其元素是映射到map函数传递给reducer函数的分组keySKU值的对象。
    • The function reduces the countObjVals array to a single object reducedValue that contains the count and the qty fields.该函数将countObjVals数组缩减为一个对象reducedValue,其中包含countqty字段。
    • In reducedVal, the count field contains the sum of the count fields from the individual array elements, and the qty field contains the sum of the qty fields from the individual array elements.reducedVal中,count字段包含单个数组元素的count字段之和,qty字段包含单个数组元素的qty字段之和。
    var reduceFunction2 = function(keySKU, countObjVals) {
       reducedVal = { count: 0, qty: 0 };
    
       for (var idx = 0; idx < countObjVals.length; idx++) {
           reducedVal.count += countObjVals[idx].count;
           reducedVal.qty += countObjVals[idx].qty;
       }
    
       return reducedVal;
    };
  3. Define a finalize function with two arguments key and reducedVal. 定义一个带有两个参数keyreducedValfinalize函数。The function modifies the reducedVal object to add a computed field named avg and returns the modified object:该函数修改reducedVal对象以添加名为avg的计算字段,并返回修改后的对象:

    var finalizeFunction2 = function (key, reducedVal) {
      reducedVal.avg = reducedVal.qty/reducedVal.count;
      return reducedVal;
    };
  4. Perform the map-reduce operation on the orders collection using the mapFunction2, reduceFunction2, and finalizeFunction2 functions:使用mapFunction2reduceFunction2finalizeFunction2函数对orders集合执行map-reduce操作:

    db.orders.mapReduce(
       mapFunction2,
       reduceFunction2,
       {
         out: { merge: "map_reduce_example2" },
         query: { ord_date: { $gte: new Date("2020-03-01") } },
         finalize: finalizeFunction2
       }
     );

    This operation uses the query field to select only those documents with ord_date greater than or equal to new Date("2020-03-01"). 此操作使用query字段仅选择ord_date大于或等于new Date("2020-03-01")的文档。Then it outputs the results to a collection map_reduce_example2.然后,它将结果输出到集合map_reduce_example2

    If the map_reduce_example2 collection already exists, the operation will merge the existing contents with the results of this map-reduce operation. 如果map_reduce_example2集合已经存在,该操作将把现有内容与map-reduce操作的结果合并。That is, if an existing document has the same key as the new result, the operation overwrites the existing document. 也就是说,如果现有文档具有与新结果相同的密钥,则该操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同密钥的现有文档,则该操作将插入该文档。

  5. Query the map_reduce_example2 collection to verify the results:查询map_reduce_example2集合以验证结果:

    db.map_reduce_example2.find().sort( { _id: 1 } )

    The operation returns these documents:该操作将返回以下文档:

    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }

Aggregation Alternative聚合替代方案

Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:使用可用的聚合管道运算符,可以重写map-reduce操作,而无需定义自定义函数:

db.orders.aggregate( [
   { $match: { ord_date: { $gte: new Date("2020-03-01") } } },
   { $unwind: "$items" },
   { $group: { _id: "$items.sku", qty: { $sum: "$items.qty" }, orders_ids: { $addToSet: "$_id" } }  },
   { $project: { value: { count: { $size: "$orders_ids" }, qty: "$qty", avg: { $divide: [ "$qty", { $size: "$orders_ids" } ] } } } },
   { $merge: { into: "agg_alternative_3", on: "_id", whenMatched: "replace",  whenNotMatched: "insert" } }
] )
  1. The $match stage selects only those documents with ord_date greater than or equal to new Date("2020-03-01").$match阶段仅选择ord_date大于或等于new Date("2020-03-01")的文件。
  2. The $unwinds stage breaks down the document by the items array field to output a document for each array element. $unwinds阶段按items数组字段分解文档,为每个数组元素输出一个文档。For example:例如:

    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    ...
  3. The $group stage groups by the items.sku, calculating for each sku:$group阶段按items.sku分组,计算每个sku:

    • The qty field. qty字段。The qty field contains the total qty ordered per each items.sku using $sum.qty字段包含使用$sum计算的每个item.sku的总订购数量。
    • The orders_ids array. orders_id数组。The orders_ids field contains an array of distinct order _id’s for the items.sku using $addToSet.orders_ids字段包含使用$addToSet计算的items.sku的不同订单_id数组。
    { "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
    { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
    { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
    { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
    { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] }
  4. The $project stage reshapes the output document to mirror the map-reduce’s output to have two fields _id and value. $project阶段对输出文档进行重塑,以镜像map-reduce的输出,使其具有两个字段_idvalueThe $project sets:$project设置:

    • the value.count to the size of the orders_ids array using $size.value.count使用$size设置为orders_ids数组的大小。
    • the value.qty to the qty field of input document.用于输入文档的qty字段的value.qty
    • the value.avg to the average number of qty per order using $divide and $size.value.avg表示使用$divide$size的每个订单的平均数量。
    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
  5. Finally, the $merge writes the output to the collection agg_alternative_3. 最后,$merge将输出写入集合agg_alternative_3If an existing document has the same key _id as the new result, the operation overwrites the existing document. 如果现有文档的键_id与新结果相同,则该操作将覆盖现有文档。If there is no existing document with the same key, the operation inserts the document.如果没有具有相同键的现有文档,则该操作将插入该文档。
  6. Query the agg_alternative_3 collection to verify the results:查询agg_alternative_3集合以验证结果:

    db.agg_alternative_3.find().sort( { _id: 1 } )

    The operation returns these documents:该操作将返回以下文档:

    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }

See also参阅

For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.有关使用自定义聚合表达式的替代方法,请参阅Map-Reduce到聚合管道转换示例

Output输出

The output of the db.collection.mapReduce() method is identical to that of the mapReduce command. db.collection.mapReduce()方法的输出与mapReduce命令的输出相同。See the Output section of the mapReduce command for information on the db.collection.mapReduce() output.有关db.collection.mapReduce()输出的信息,请参阅mapReduce命令的输出部分。

Restrictions限制

MongoDB drivers automatically set afterClusterTime for operations associated with causally consistent sessions. MongoDB驱动程序会自动为与因果一致会话相关的操作设置afterClusterTimeStarting in MongoDB 4.2, the db.collection.mapReduce() no longer support afterClusterTime. 从MongoDB 4.2开始,db.collection.mapReduce()不再支持afterClusterTimeAs such, db.collection.mapReduce() cannot be associatd with causally consistent sessions.因此,db.collection.mapReduce()不能与因果一致的会话相关联。

Additional Information其他信息