mapReduce

On this page本页内容

Definition定义

mapReduce

The mapReduce command allows you to run map-reduce aggregation operations over a collection.mapReduce命令允许您在集合上运行map-reduce聚合操作。

Aggregation Pipeline as Alternative聚合管道作为替代方案

Aggregation pipeline provides better performance and a more coherent interface than map-reduce, and map-reduce expressions can be rewritten using aggregation pipeline operators, such as $group, $merge, etc.聚合管道提供了比map-reduce更好的性能和更一致的接口,并且可以使用聚合管道运算符(如$group$merge等)重写map-reduce表达式。

For map-reduce expressions that require custom functionality, MongoDB provides the $accumulator and $function aggregation operators starting in version 4.4. 对于需要自定义功能的map-reduce表达式,MongoDB从4.4版开始提供$accumulator$function聚合运算符。These operators provide users with the ability to define custom aggregation expressions in JavaScript.这些操作符使用户能够在JavaScript中定义自定义聚合表达式。

For examples of aggregation alternatives to map-reduce operations, see Map-Reduce Examples. 有关映射减少操作的聚合替代方案的示例,请参阅Map-Reduce示例See also Map-Reduce to Aggregation Pipeline.另请参见对聚合管道的Map-Deduce

Syntax语法

Note

Starting in version 4.4, MongoDB ignores the verbose option.从版本4.4开始,MongoDB将忽略verbose选项。

Starting in version 4.2, MongoDB deprecates:从4.2版开始,MongoDB不推荐:

  • The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. 使用map reduce选项创建新的分片集合,以及使用分片选项进行map reduce。To output to a sharded collection, create the sharded collection first. 要输出到分片集合,请首先创建分片集合。MongoDB 4.2 also deprecates the replacement of an existing sharded collection.MongoDB 4.2还反对替换现有的分片集合。
  • The explicit specification of nonAtomic: false option.

The mapReduce command has the following syntax:语法如下所示:

db.runCommand( {
     mapReduce: <string>,
     map: <string or JavaScript>,
     reduce: <string or JavaScript>,
     finalize: <string or JavaScript>,
     out: <output>,
     query: <document>,
     sort: <document>,
     limit: <number>,
     scope: <document>,
     jsMode: <boolean>,
     verbose: <boolean>,
     bypassDocumentValidation: <boolean>,
     collation: <document>,
     writeConcern: <document>,
     comment: <any>
} )

Command Fields命令字段

The command takes the following fields as arguments:该命令将以下字段作为参数:

Field字段Type类型Description描述
mapReduce string

The name of the collection on which you want to perform map-reduce. 要对其执行映射缩减的集合的名称。This collection will be filtered using query before being processed by the map function.map函数处理此集合之前,将使用query对其进行筛选。

Note

Views do not support map-reduce operations.不支持map reduce操作。

map JavaScript or String

A JavaScript function that associates or “maps” a value with a key and emits the key and value pair. 一个JavaScript函数,它将一个value与一个key关联或“映射”,并发出键和值对。You can specify the function as BSON type JavaScript (i.e. BSON type 13) or String (i.e. BSON type 2).您可以将函数指定为BSON类型JavaScript(即BSON类型13)或字符串(即BSON类型2)。

See Requirements for the map Function for more information.有关更多信息,请参阅map函数的要求

reduce JavaScript or String

A JavaScript function that “reduces” to a single object all the values associated with a particular key. 一个JavaScript函数,它将与特定key关联的所有values“减少”为单个对象。You can specify the function as BSON type JavaScript (i.e. BSON type 13) or String (i.e. BSON type 2).您可以将函数指定为BSON类型JavaScript(即BSON类型13)或字符串(即BSON类型2)。

See Requirements for the reduce Function for more information.有关更多信息,请参阅reduce函数的要求

out string or document

Specifies where to output the result of the map-reduce operation. 指定在何处输出映射减少操作的结果。You can either output to a collection or return the result inline. 可以输出到集合,也可以内联返回结果。On a primary member of a replica set you can output either to a collection or inline, but on a secondary, only inline output is possible.在副本集的主要成员上,可以输出到集合或内联,但在次要成员上,只能输出内联。

See out Options for more information.有关详细信息,请参阅out选项

query document

Optional. 可选。Specifies the selection criteria using query operators for determining the documents input to the map function.使用查询运算符指定选择条件,以确定输入到映射函数的文档。

sort document

Optional. 可选。Sorts the input documents. 输入文档进行排序。This option is useful for optimization. 此选项对于优化非常有用。For example, specify the sort key to be the same as the emit key so that there are fewer reduce operations. 例如,将排序键指定为与发射键相同,以减少reduce操作。The sort key must be in an existing index for this collection.排序键必须位于此集合的现有索引中。

limit number

Optional. 可选。Specifies a maximum number of documents for the input into the map function.指定map函数输入的最大文档数。

finalize JavaScript or String

Optional. 可选。A JavaScript function that modifies the output after the reduce function. reduce函数之后修改输出的JavaScript函数。You can specify the function as BSON type JavaScript (i.e. BSON type 13) or String (i.e. BSON type 2).您可以将函数指定为BSON类型JavaScript(即BSON类型13)或字符串(即BSON类型2)。

See Requirements for the finalize Function for more information.有关更多信息,请参阅finalize函数的要求

scope document

Optional. 可选。Specifies global variables that are accessible in the map, reduce and finalize functions.指定可在mapreducefinalize函数中访问的全局变量。

jsMode boolean

Optional. 可选。Specifies whether to convert intermediate data into BSON format between the execution of the map and reduce functions.指定是否在执行mapreduce函数之间将中间数据转换为BSON格式。

Defaults to false.默认为false

If false:如果为false

  • Internally, MongoDB converts the JavaScript objects emitted by the map function to BSON objects. 在内部,MongoDB将map函数发出的JavaScript对象转换为BSON对象。These BSON objects are then converted back to JavaScript objects when calling the reduce function.当调用reduce函数时,这些BSON对象被转换回JavaScript对象。
  • The map-reduce operation places the intermediate BSON objects in temporary, on-disk storage. map-reduce操作将中间BSON对象放置在临时磁盘存储中。This allows the map-reduce operation to execute over arbitrarily large data sets.这允许map-reduce操作在任意大的数据集上执行。

If true:如果为true

  • Internally, the JavaScript objects emitted during map function remain as JavaScript objects. 在内部,map函数期间发出的JavaScript对象保持为JavaScript对象。There is no need to convert the objects for the reduce function, which can result in faster execution.不需要为reduce函数转换对象,这样可以加快执行速度。
  • You can only use jsMode for result sets with fewer than 500,000 distinct key arguments to the mapper’s emit() function.对于映射器的emit()函数,只能使用jsMode处理少于500000个不同key参数的结果集。
verbose boolean

Optional. 可选。Specifies whether to include the timing information in the result information. 指定是否在结果信息中包含计时信息。Set verbose to true to include the timing information.verbose设置为true以包含timing信息。

Defaults to false.默认为false

Starting in MongoDB 4.4, this option is ignored. 从MongoDB 4.4开始,忽略此选项。The result information always excludes the timing information. 结果信息始终排除timing信息。You can view timing information by running explain with the mapReduce command in the "executionStats" or "allPlansExecution" verbosity modes.您可以通过在“executionStats”或“allPlansExecution”详细模式下使用mapReduce命令运行explain来查看计时信息。

bypassDocumentValidation boolean

Optional. 可选。Enables mapReduce to bypass document validation during the operation. 允许mapReduce在操作过程中绕过文档验证。This lets you insert documents that do not meet the validation requirements.这允许您插入不符合验证要求的文档。

New in version 3.2.版本3.2中的新功能。

Note

If the output option is set to inline, no document validation occurs. 如果output选项设置为inline,则不会进行文档验证If the output goes to a collection, mapReduce observes any validation rules which the collection has and does not insert any invalid documents unless the bypassDocumentValidation parameter is set to true.如果输出转到集合,mapReduce将遵守集合拥有的任何验证规则,并且不会插入任何无效文档,除非bypassDocumentValidation参数设置为true

collation document

Optional.

Specifies the collation to use for the operation.指定用于操作的排序规则

Collation allows users to specify language-specific rules for string comparison, such as rules for lettercase and accent marks.允许用户为字符串比较指定特定于语言的规则,例如大小写和重音符号的规则。

The collation option has the following syntax:collation选项语法如下所示:

collation: {
   locale: <string>,
   caseLevel: <boolean>,
   caseFirst: <string>,
   strength: <int>,
   numericOrdering: <boolean>,
   alternate: <string>,
   maxVariable: <string>,
   backwards: <boolean>
}

When specifying collation, the locale field is mandatory; all other collation fields are optional. 指定排序规则时,locale设置字段为必填字段;所有其他排序规则字段都是可选的。For descriptions of the fields, see Collation Document.有关字段的说明,请参阅排序规则文档

If the collation is unspecified but the collection has a default collation (see db.createCollection()), the operation uses the collation specified for the collection.如果未指定排序规则,但集合具有默认排序规则(请参见db.createCollection()),则操作将使用为集合指定的排序规则。

If no collation is specified for the collection or for the operations, MongoDB uses the simple binary comparison used in prior versions for string comparisons.如果没有为集合或操作指定排序规则,MongoDB将使用以前版本中使用的简单二进制比较进行字符串比较。

You cannot specify multiple collations for an operation. For example, you cannot specify different collations per field, or if performing a find with a sort, you cannot use one collation for the find and another for the sort.不能为一个操作指定多个排序规则。例如,不能为每个字段指定不同的排序规则,或者如果使用排序执行查找,则不能对查找使用一种排序规则,对排序使用另一种排序规则。

New in version 3.4.版本3.4中的新功能。

writeConcern document

Optional. 可选。A document that expresses the write concern to use when outputing to a collection. 表示输出到集合时要使用的写入关注点的文档。Omit to use the default write concern.忽略使用默认的写关注点。

comment any

Optional.可选。A user-provided comment to attach to this command. 用户提供了要附加到此命令的注释。Once set, this comment appears alongside records of this command in the following locations:设置后,此注释将与此命令的记录一起显示在以下位置:

A comment can be any valid BSON type (string, integer, object, array, etc).注释可以是任何有效的BSON类型(字符串、整数、对象、数组等)。

New in version 4.4.版本4.4中的新功能。

Usage用法

The following is a prototype usage of the mapReduce command:以下是mapReduce命令的原型用法:

var mapFunction = function() { ... };
var reduceFunction = function(key, values) { ... };

db.runCommand(
               {
                 mapReduce: <input-collection>,
                 map: mapFunction,
                 reduce: reduceFunction,
                 out: { merge: <output-collection> },
                 query: <query>
               }
             )

JavaScript in MongoDB

Although mapReduce uses JavaScript, most interactions with MongoDB do not use JavaScript but use an idiomatic driver in the language of the interacting application.尽管mapReduce使用JavaScript,但与MongoDB的大多数交互都不使用JavaScript,而是使用交互应用程序语言中的惯用驱动程序

Requirements for the map Functionmap函数的要求

The map function is responsible for transforming each input document into zero or more documents. It can access the variables defined in the scope parameter, and has the following prototype:

function() {
   ...
   emit(key, value);
}

The map function has the following requirements:

The following map function will call emit(key,value) either 0 or 1 times depending on the value of the input document’s status field:

function() {
    if (this.status == 'A')
        emit(this.cust_id, 1);
}

The following map function may call emit(key,value) multiple times depending on the number of elements in the input document’s items field:

function() {
    this.items.forEach(function(item){ emit(item.sku, 1); });
}

Requirements for the reduce Function

The reduce function has the following prototype:

function(key, values) {
   ...
   return result;
}

The reduce function exhibits the following behaviors:

Because it is possible to invoke the reduce function more than once for the same key, the following properties need to be true:

Requirements for the finalize Function

The finalize function has the following prototype:

function(key, reducedValue) {
   ...
   return modifiedObject;
}

The finalize function receives as its arguments a key value and the reducedValue from the reduce function. Be aware that:

out Options

You can specify the following options for the out parameter:

Output to a Collection

This option outputs to a new collection, and is not available on secondary members of replica sets.

out: <collectionName>

Output to a Collection with an Action

Note

Starting in version 4.2, MongoDB deprecates:

  • The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.
  • The explicit specification of nonAtomic: false option.

This option is only available when passing a collection that already exists to out. It is not available on secondary members of replica sets.

out: { <action>: <collectionName>
        [, db: <dbName>]
        [, sharded: <boolean> ]
        [, nonAtomic: <boolean> ] }

When you output to a collection with an action, the out has the following parameters:

  • <action>: Specify one of the following actions:

    • replace

      Replace the contents of the <collectionName> if the collection with the <collectionName> exists.

    • merge

      Merge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, overwrite that existing document.

    • reduce

      Merge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, apply the reduce function to both the new and the existing documents and overwrite the existing document with the result.

  • db:

    Optional. 可选。The name of the database that you want the map-reduce operation to write its output. By default this will be the same database as the input collection.

  • sharded:

    Note

    Starting in version 4.2, the use of the sharded option is deprecated.

    Optional. 可选。If true and you have enabled sharding on output database, the map-reduce operation will shard the output collection using the _id field as the shard key.

    If true and collectionName is an existing unsharded collection, map-reduce fails.

  • nonAtomic:

    Note

    Starting in MongoDB 4.2, explicitly setting nonAtomic to false is deprecated.

    Optional. 可选。Specify output operation as non-atomic. This applies only to the merge and reduce output modes, which may take minutes to execute.

    By default nonAtomic is false, and the map-reduce operation locks the database during post-processing.

    If nonAtomic is true, the post-processing step prevents MongoDB from locking the database: during this time, other clients will be able to read intermediate states of the output collection.

Output Inline

Perform the map-reduce operation in memory and return the result. This option is the only available option for out on secondary members of replica sets.

out: { inline: 1 }

The result must fit within the maximum size of a BSON document.

Required Access

If your MongoDB deployment enforces authentication, the user executing the mapReduce command must possess the following privilege actions:

Map-reduce with {out : inline} output option:

Map-reduce with the replace action when outputting to a collection:

Map-reduce with the merge or reduce actions when outputting to a collection:

The readWrite built-in role provides the necessary permissions to perform map-reduce aggregation.

Restrictions

MongoDB drivers automatically set afterClusterTime for operations associated with causally consistent sessions. Starting in MongoDB 4.2, the mapReduce command no longer support afterClusterTime. As such, mapReduce cannot be associatd with causally consistent sessions.

Map-Reduce Examples

In the mongo shell, the db.collection.mapReduce() method is a wrapper around the mapReduce command. The following examples use the db.collection.mapReduce() method:

Aggregation Pipeline as Alternative

Aggregation pipeline provides better performance and a simpler interface than map-reduce, and map-reduce expressions can be rewritten using aggregation pipeline operators such as $group, $merge, and others.

For map-reduce expressions that require custom functionality, MongoDB provides the $accumulator and $function aggregation operators starting in version 4.4. These operators provide the ability to define custom aggregation expressions in JavaScript.

The examples in this section include aggregation pipeline alternatives without custom aggregation expressions. For alternatives that use custom expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.

Create a sample collection orders with these documents:

db.orders.insertMany([
   { _id: 1, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-01"), price: 25, items: [ { sku: "oranges", qty: 5, price: 2.5 }, { sku: "apples", qty: 5, price: 2.5 } ], status: "A" },
   { _id: 2, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-08"), price: 70, items: [ { sku: "oranges", qty: 8, price: 2.5 }, { sku: "chocolates", qty: 5, price: 10 } ], status: "A" },
   { _id: 3, cust_id: "Busby Bee", ord_date: new Date("2020-03-08"), price: 50, items: [ { sku: "oranges", qty: 10, price: 2.5 }, { sku: "pears", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 4, cust_id: "Busby Bee", ord_date: new Date("2020-03-18"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 5, cust_id: "Busby Bee", ord_date: new Date("2020-03-19"), price: 50, items: [ { sku: "chocolates", qty: 5, price: 10 } ], status: "A"},
   { _id: 6, cust_id: "Cam Elot", ord_date: new Date("2020-03-19"), price: 35, items: [ { sku: "carrots", qty: 10, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 7, cust_id: "Cam Elot", ord_date: new Date("2020-03-20"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 8, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 75, items: [ { sku: "chocolates", qty: 5, price: 10 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 9, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 55, items: [ { sku: "carrots", qty: 5, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 }, { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" },
   { _id: 10, cust_id: "Don Quis", ord_date: new Date("2020-03-23"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }
])

Return the Total Price Per Customer

Perform the map-reduce operation on the orders collection to group by the cust_id, and calculate the sum of the price for each cust_id:

  1. Define the map function to process each input document:

    • In the function, this refers to the document that the map-reduce operation is processing.
    • The function maps the price to the cust_id for each document and emits the cust_id and price.
    var mapFunction1 = function() {
       emit(this.cust_id, this.price);
    };
  2. Define the corresponding reduce function with two arguments keyCustId and valuesPrices:

    • The valuesPrices is an array whose elements are the price values emitted by the map function and grouped by keyCustId.
    • The function reduces the valuesPrice array to the sum of its elements.
    var reduceFunction1 = function(keyCustId, valuesPrices) {
       return Array.sum(valuesPrices);
    };
  3. Perform map-reduce on all documents in the orders collection using the mapFunction1 map function and the reduceFunction1 reduce function:

    db.orders.mapReduce(
       mapFunction1,
       reduceFunction1,
       { out: "map_reduce_example" }
    )

    This operation outputs the results to a collection named map_reduce_example. If the map_reduce_example collection already exists, the operation will replace the contents with the results of this map-reduce operation.

  4. Query the map_reduce_example collection to verify the results:

    db.map_reduce_example.find().sort( { _id: 1 } )

    The operation returns these documents:

    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Busby Bee", "value" : 125 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Don Quis", "value" : 155 }

Aggregation Alternative

Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:

db.orders.aggregate([
   { $group: { _id: "$cust_id", value: { $sum: "$price" } } },
   { $out: "agg_alternative_1" }
])
  1. The $group stage groups by the cust_id and calculates the value field using $sum. The value field contains the total price for each cust_id.

    This stage outputs these documents to the next stage:

    { "_id" : "Don Quis", "value" : 155 }
    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Busby Bee", "value" : 125 }
  2. Then, the $out writes the output to the collection agg_alternative_1. Alternatively, you could use $merge instead of $out.
  3. Query the agg_alternative_1 collection to verify the results:

    db.agg_alternative_1.find().sort( { _id: 1 } )

    The operation returns these documents:

    { "_id" : "Ant O. Knee", "value" : 95 }
    { "_id" : "Busby Bee", "value" : 125 }
    { "_id" : "Cam Elot", "value" : 60 }
    { "_id" : "Don Quis", "value" : 155 }

See also参阅

For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.

Calculate Order and Total Quantity with Average Quantity Per Item

In the following example, you will see a map-reduce operation on the orders collection for all documents that have an ord_date value greater than or equal to 2020-03-01.

The operation in the example:

  1. Groups by the item.sku field, and calculates the number of orders and the total quantity ordered for each sku.
  2. Calculates the average quantity per order for each sku value and merges the results into the output collection.

When merging results, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.

Example steps:

  1. Define the map function to process each input document:

    • In the function, this refers to the document that the map-reduce operation is processing.
    • For each item, the function associates the sku with a new object value that contains the count of 1 and the item qty for the order and emits the sku (stored in the key) and the value.
     var mapFunction2 = function() {
        for (var idx = 0; idx < this.items.length; idx++) {
           var key = this.items[idx].sku;
           var value = { count: 1, qty: this.items[idx].qty };
    
           emit(key, value);
        }
    };
  2. Define the corresponding reduce function with two arguments keySKU and countObjVals:

    • countObjVals is an array whose elements are the objects mapped to the grouped keySKU values passed by map function to the reducer function.
    • The function reduces the countObjVals array to a single object reducedValue that contains the count and the qty fields.
    • In reducedVal, the count field contains the sum of the count fields from the individual array elements, and the qty field contains the sum of the qty fields from the individual array elements.
    var reduceFunction2 = function(keySKU, countObjVals) {
       reducedVal = { count: 0, qty: 0 };
    
       for (var idx = 0; idx < countObjVals.length; idx++) {
           reducedVal.count += countObjVals[idx].count;
           reducedVal.qty += countObjVals[idx].qty;
       }
    
       return reducedVal;
    };
  3. Define a finalize function with two arguments key and reducedVal. The function modifies the reducedVal object to add a computed field named avg and returns the modified object:

    var finalizeFunction2 = function (key, reducedVal) {
      reducedVal.avg = reducedVal.qty/reducedVal.count;
      return reducedVal;
    };
  4. Perform the map-reduce operation on the orders collection using the mapFunction2, reduceFunction2, and finalizeFunction2 functions:

    db.orders.mapReduce(
       mapFunction2,
       reduceFunction2,
       {
         out: { merge: "map_reduce_example2" },
         query: { ord_date: { $gte: new Date("2020-03-01") } },
         finalize: finalizeFunction2
       }
     );

    This operation uses the query field to select only those documents with ord_date greater than or equal to new Date("2020-03-01"). Then it outputs the results to a collection map_reduce_example2.

    If the map_reduce_example2 collection already exists, the operation will merge the existing contents with the results of this map-reduce operation. That is, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.

  5. Query the map_reduce_example2 collection to verify the results:

    db.map_reduce_example2.find().sort( { _id: 1 } )

    The operation returns these documents:

    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }

Aggregation Alternative

Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:

db.orders.aggregate( [
   { $match: { ord_date: { $gte: new Date("2020-03-01") } } },
   { $unwind: "$items" },
   { $group: { _id: "$items.sku", qty: { $sum: "$items.qty" }, orders_ids: { $addToSet: "$_id" } }  },
   { $project: { value: { count: { $size: "$orders_ids" }, qty: "$qty", avg: { $divide: [ "$qty", { $size: "$orders_ids" } ] } } } },
   { $merge: { into: "agg_alternative_3", on: "_id", whenMatched: "replace",  whenNotMatched: "insert" } }
] )
  1. The $match stage selects only those documents with ord_date greater than or equal to new Date("2020-03-01").
  2. The $unwinds stage breaks down the document by the items array field to output a document for each array element. For example:例如:

    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" }
    { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" }
    { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" }
    ...
  3. The $group stage groups by the items.sku, calculating for each sku:

    • The qty field. The qty field contains the total qty ordered per each items.sku using $sum.
    • The orders_ids array. The orders_ids field contains an array of distinct order _id’s for the items.sku using $addToSet.
    { "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] }
    { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] }
    { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] }
    { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] }
    { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] }
  4. The $project stage reshapes the output document to mirror the map-reduce’s output to have two fields _id and value. The $project sets:

    • the value.count to the size of the orders_ids array using $size.
    • the value.qty to the qty field of input document.
    • the value.avg to the average number of qty per order using $divide and $size.
    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
  5. Finally, the $merge writes the output to the collection agg_alternative_3. If an existing document has the same key _id as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.
  6. Query the agg_alternative_3 collection to verify the results:

    db.agg_alternative_3.find().sort( { _id: 1 } )

    The operation returns these documents:

    { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } }
    { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } }
    { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } }
    { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } }
    { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }

See also参阅

For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.

For more information and examples, see the Map-Reduce page and Perform Incremental Map-Reduce.

Output

If you set the out parameter to write the results to a collection, the mapReduce command returns a document in the following form:

{ "result" : "map_reduce_example", "ok" : 1 }
{
    "result" : <string or document>,
    "timeMillis" : <int>,
    "counts" : {
        "input" : <int>,
        "emit" : <int>,
        "reduce" : <int>,
        "output" : <int>
    },
    "ok" : <int>,
}

If you set the out parameter to output the results inline, the mapReduce command returns a document in the following form:

{
    "results" : [
       {
          "_id" : <key>,
          "value" :<reduced or finalizedValue for key>
       },
       ...
    ],
    "ok" : <int>
}
{
    "results" : [
       {
          "_id" : <key>,
          "value" :<reduced or finalizedValue for key>
       },
       ...
    ],
    "timeMillis" : <int>,
    "counts" : {
       "input" : <int>,
       "emit" : <int>,
       "reduce" : <int>,
       "output" : <int>
    },
    "ok" : <int>
}
mapReduce.result

For output sent to a collection, this value is either:

  • a string for the collection name if out did not specify the database name, or
  • a document with both db and collection fields if out specified both a database and collection name.
mapReduce.results

For output written inline, an array of resulting documents. Each resulting document contains two fields:

  • _id field contains the key value,
  • value field contains the reduced or finalized value for the associated key.
mapReduce.timeMillis

Available for MongoDB 4.2 and earlier only

The command execution time in milliseconds.

mapReduce.counts

Available for MongoDB 4.2 and earlier only

Various count statistics from the mapReduce command.

mapReduce.counts.input

Available for MongoDB 4.2 and earlier only

The number of input documents, which is the number of times the mapReduce command called the map function.

mapReduce.counts.emit

Available for MongoDB 4.2 and earlier only

The number of times the mapReduce command called the emit function.

mapReduce.counts.reduce

Available for MongoDB 4.2 and earlier only

The number of times the mapReduce command called the reduce function.

mapReduce.counts.output

Available for MongoDB 4.2 and earlier only

The number of output values produced.

mapReduce.ok

A value of 1 indicates the mapReduce command ran successfully. A value of 0 indicates an error.

In addition to the aforementioned command specific return fields, the db.runCommand() includes additional information:

See db.runCommand Response for details on these fields.

Additional Information