WiredTiger Storage EngineWiredTiger存储引擎

On this page本页内容

Starting in MongoDB 3.2, the WiredTiger storage engine is the default storage engine. 从MongoDB 3.2开始,WiredTiger存储引擎是默认的存储引擎。For existing deployments, if you do not specify the --storageEngine or the storage.engine setting, the version 3.2+ mongod instance can automatically determine the storage engine used to create the data files in the --dbpath or storage.dbPath. See Default Storage Engine Change.

Document Level Concurrency文档级并发

WiredTiger uses document-level concurrency control for write operations. WiredTiger对写入操作使用文档级并发控制。As a result, multiple clients can modify different documents of a collection at the same time.因此,多个客户端可以同时修改集合的不同文档。

For most read and write operations, WiredTiger uses optimistic concurrency control. 对于大多数读写操作,WiredTiger使用乐观并发控制。WiredTiger uses only intent locks at the global, database and collection levels. WiredTiger仅在全局、数据库和收集级别使用意向锁。When the storage engine detects conflicts between two operations, one will incur a write conflict causing MongoDB to transparently retry that operation.当存储引擎检测到两个操作之间存在冲突时,其中一个操作将引发写入冲突,导致MongoDB透明地重试该操作。

Some global operations, typically short lived operations involving multiple databases, still require a global “instance-wide” lock. 一些全局操作(通常是涉及多个数据库的短期操作)仍然需要全局“实例范围”锁。Some other operations, such as collMod, still require an exclusive database lock.其他一些操作,例如collMod,仍然需要独占数据库锁。

Snapshots and Checkpoints快照和检查点

WiredTiger uses MultiVersion Concurrency Control (MVCC). At the start of an operation, WiredTiger provides a point-in-time snapshot of the data to the operation. A snapshot presents a consistent view of the in-memory data.

When writing to disk, WiredTiger writes all the data in a snapshot to disk in a consistent way across all data files. The now-durable data act as a checkpoint in the data files. The checkpoint ensures that the data files are consistent up to and including the last checkpoint; i.e. checkpoints can act as recovery points.

Starting in version 3.6, MongoDB configures WiredTiger to create checkpoints (i.e. write the snapshot data to disk) at intervals of 60 seconds. In earlier versions, MongoDB sets checkpoints to occur in WiredTiger on user data at an interval of 60 seconds or when 2 GB of journal data has been written, whichever occurs first.

During the write of a new checkpoint, the previous checkpoint is still valid. As such, even if MongoDB terminates or encounters an error while writing a new checkpoint, upon restart, MongoDB can recover from the last valid checkpoint.

The new checkpoint becomes accessible and permanent when WiredTiger’s metadata table is atomically updated to reference the new checkpoint. Once the new checkpoint is accessible, WiredTiger frees pages from the old checkpoints.

Using WiredTiger, even without journaling, MongoDB can recover from the last checkpoint; however, to recover changes made after the last checkpoint, run with journaling.

Note

Starting in MongoDB 4.0, you cannot specify --nojournal option or storage.journal.enabled: false for replica set members that use the WiredTiger storage engine.

Journal

WiredTiger uses a write-ahead log (i.e. journal) in combination with checkpoints to ensure data durability.

The WiredTiger journal persists all data modifications between checkpoints. If MongoDB exits between checkpoints, it uses the journal to replay all data modified since the last checkpoint. For information on the frequency with which MongoDB writes the journal data to disk, see Journaling Process.

WiredTiger journal is compressed using the snappy compression library. To specify a different compression algorithm or no compression, use the storage.wiredTiger.engineConfig.journalCompressor setting. For details on changing the journal compressor, see Change WiredTiger Journal Compressor.

Note

If a log record less than or equal to 128 bytes (the mininum log record size for WiredTiger), WiredTiger does not compress that record.

You can disable journaling for standalone instances by setting storage.journal.enabled to false, which can reduce the overhead of maintaining the journal. For standalone instances, not using the journal means that, when MongoDB exits unexpectedly, you will lose all data modifications prior to the last checkpoint.

Note

Starting in MongoDB 4.0, you cannot specify --nojournal option or storage.journal.enabled: false for replica set members that use the WiredTiger storage engine.

Compression

With WiredTiger, MongoDB supports compression for all collections and indexes. Compression minimizes storage use at the expense of additional CPU.

By default, WiredTiger uses block compression with the snappy compression library for all collections and prefix compression for all indexes.

For collections, the following block compression libraries are also available:

To specify an alternate compression algorithm or no compression, use the storage.wiredTiger.collectionConfig.blockCompressor setting.

For indexes, to disable prefix compression, use the storage.wiredTiger.indexConfig.prefixCompression setting.

Compression settings are also configurable on a per-collection and per-index basis during collection and index creation. See Specify Storage Engine Options and db.collection.createIndex() storageEngine option.

For most workloads, the default compression settings balance storage efficiency and processing requirements.

The WiredTiger journal is also compressed by default. For information on journal compression, see Journal.

Memory Use

With WiredTiger, MongoDB utilizes both the WiredTiger internal cache and the filesystem cache.

Starting in MongoDB 3.4, the default WiredTiger internal cache size is the larger of either:

For example, on a system with a total of 4GB of RAM the WiredTiger cache will use 1.5GB of RAM (0.5 * (4 GB - 1 GB) = 1.5 GB). Conversely, a system with a total of 1.25 GB of RAM will allocate 256 MB to the WiredTiger cache because that is more than half of the total RAM minus one gigabyte (0.5 * (1.25 GB - 1 GB) = 128 MB < 256 MB).

Note

In some instances, such as when running in a container, the database can have memory constraints that are lower than the total system memory. In such instances, this memory limit, rather than the total system memory, is used as the maximum RAM available.

To see the memory limit, see hostInfo.system.memLimitMB.

By default, WiredTiger uses Snappy block compression for all collections and prefix compression for all indexes. Compression defaults are configurable at a global level and can also be set on a per-collection and per-index basis during collection and index creation.

Different representations are used for data in the WiredTiger internal cache versus the on-disk format:

Via the filesystem cache, MongoDB automatically uses all free memory that is not used by the WiredTiger cache or by other processes.

To adjust the size of the WiredTiger internal cache, see storage.wiredTiger.engineConfig.cacheSizeGB and --wiredTigerCacheSizeGB. Avoid increasing the WiredTiger internal cache size above its default value.